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INTRODUCTION



SOME MOTIVATION

Consider

M2(C) ⊂ M4(C) ⊂ M8(C) ⊂ · · · ⊂
∪
M2n(C)

a 7→
(
a 0
0 a

)

Think of the elements of
∪
M2n(C) as “infinite by infinite

matrices” that act on the vector space ℓ2(N).
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SOME MOTIVATION (CONT’D)

Several ways to topologize these. Here are two:

• two “matrices” are close if enough of their entries are
close. This leads to the weak operator topology (WOT).

• two “matrices” are close if they map the unit ball of ℓ2(N)
to nearly the same place. This leads to the ‖ · ‖-topology.

These are examples of operator algebras. This talk is about
classifying them: how to tell them apart.
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SOME MOTIVATION (CONT’D)

Two very early examples of classification results:

Murray-von Neumann, 1943∪
M2n(C)

WOT
∼=
∪
M3n(C)

WOT

Glimm, 1960 ∪
M2n(C)

∥·∥
6∼=
∪
M3n(C)

∥·∥

How to distinguish these last two? Associate a group with such
algebras that is invariant under isomorphism, called K0(−). It
turns out that

K0
(∪

Mpn(C)
∥·∥)

=

{
m
pn : m,n ∈ Z

}
.
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OPERATOR ALGEBRAS

Example: B(H), bounded operators on a Hilbert space

• algebraic structure: ∗-algebra, 〈T∗v,w〉 = 〈v, Tw〉
• analytic structure: ‖T‖ = sup{‖Tv‖ : ‖v‖ = 1}, Banach
space.

• e.g. H = Cn ⇝ Mn(C)

C∗-algebras
• A ⊂ B(H), closed in ‖ · ‖
• A abelian⇝ C(X)
• “Topological flavor”

von Neumann algebras
• M⊂ B(H), closed in WOT.
• M abelian⇝ L∞(X,μ)
• “Measure theoretic flavor”
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EXAMPLE: C∗(Z)

Can represent Z “concretely” as operators on ℓ2(Z), n 7→ λn;
λn shifts entries of vector by n.
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MORE GENERAL EXAMPLE: GROUP ALGEBRAS

• Γ: (discrete) group. Get Hilbert space ℓ2(Γ) of square
summable functions Γ→ C with basis {δγ}γ∈Γ
(δγ: indicator function of {γ}).

• left regular representation: γ 7→ λγ ∈ B(ℓ2(Γ)), where
λγ(δγ′) = δγγ′ .

• C∗λ(Γ) := ‖ · ‖-closure of ∗-algebra generated by the λγ’s
• vN(Γ) := WOT-closure of ∗-algebra generated by the λγ’s

This generalizes the Fourier transform:

• C∗λ(Z) ∼= C(T)
• Moreover: vN(Z) ∼= L∞(T)
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EXAMPLE: THE IRRATIONAL ROTATION C*-ALGEBRA Aθ

• Fix θ ∈ R \Q. Let φ : T→ T be rotation by 2πθ.
• Get action Z ↷ T: n 7→ φn.

• Aθ is generated by φ and C(T), as follows:
Consider the operators T and Mf (f ∈ C(T)) on L2(T),

U(g) = g ◦ φ−1, Mf(g) = fg.

Aθ := ‖ · ‖-closure of the ∗-algebra they generate.
Note: U−1MfU = Mf◦φ−1 . Think of semidirect products.

(Foreshadowing) observations on Aθ
• Aθ is a “noncommutative” version of T2 ⇝ Aθ is finite
dimensional (in some noncommutative sense).

• θ 6∈ Q⇒6 ∃ nontrivial closed invariant subsets of T.
Translation: no nontrivial closed ideals of Aθ. It’s simple.

• Aθ is built using friendly (even abelian) objects. It’s amenable.
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MORE GENERAL EXAMPLE: GROUP ACTIONS/DYNAMICS

• group Γ acts on X (e.g compact metric space) by
homeomorphisms: Γ α↷ X.

• Get induced action of Γ on C(X): γf = f ◦ α−1γ .
• Roughly speaking, can combine C∗λ(Γ) and C(X) and form
the crossed product C(X)⋊ Γ.

• Construction is similar to semidirect product of groups:
H↷ N⇝ N⋊ H.
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FACTORS, FINITE DIMENSIONAL
APPROXIMATIONS, AMENABILITY:
CLASSIFYING VN ALGEBRAS



FACTORS

Factor: a vN alg. with no nontrivial vN alg. ideals.

Every vN algebra is a “direct integral” of factors.

Example: M = L∞(X,μ)⋊ Γ
If Γ↷ (X,μ) is free, then L∞(X,μ)⋊ Γ is a factor⇔ action is
ergodic.

E.g: X = Z, Γ = Z, action = translation.

Dim(M) = {1, 2, 3, . . . ,∞}

E.g.: X = T, Γ = Z, action = irrational rotation.

Dim(M) = [0, 1]

How to distinguish? Can look at the possible dimensions:
equivalence classes of projections.
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MORE EXAMPLES

Examples I

• Mk(C)
• B
(
ℓ2(N)

)

Examples II

• R :=
∪
n≥1M2n(C)

WOT

• vN(S∞)

S∞ = finite permutations on N

• L∞(T)⋊θ Z

• B
(
ℓ2(N,R)

)
(“matrices” with entries in R)

Dim = {1, 2, . . . ,n}
⇝ type In (n =∞ allowed)

Dim = [0, 1]
⇝ type II1

projections ∼ [0,∞]

⇝ type II∞
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APPROXIMATELY FINITE DIMENSIONAL VN ALGEBRAS

Def: Approximately finite dimensional (AFD) vN algebra M
Contains finite dim’l subalgebras F1 ⊂ F2 ⊂ · · · ⊂ M with
WOT-dense union.
(Note: finite dim’l⇔

⊕N
k=1Mn(k)(C).)

Theorem (Murray-von Neumann, 1943)
There is a unique AFD factor of type II1, R.

One issue: exhibiting internal finite dim’l approximations
verifying AFD condition can be difficult.

Would like abstract condition, avoiding concrete internal
structural requirements.
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AMENABILITY

Group case
A (discrete) group Γ is amenable if it admits a finitely additive
left-invariant probability measure on its subsets—a “mean”.

• Includes finite groups, abelian groups
• Closed under direct limits, taking quotients, subgroups,
extensions

• Important non-example: free group Fn(n ≥ 2). Related to
Banach-Tarski paradox.

Can define an analog for C∗-algebras and vN algebras. It turns
out (with quite some effort) that:

Γ amenable⇔ C∗λ(Γ) amenable⇔ vN(Γ) amenable.
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CONNES’ THEOREM; CLASSIFYING AMENABLE FACTORS

Connes’ theorem, 1976
A vN algebra M is amenable⇔ M is AFD.

Theorem (Connes, Haagerup, Murray–von Neumann)
There is a unique amenable factor for each of the types In
(n ∈ N), I∞, II1, II∞, IIIλ (0 < λ ≤ 1), and the type III0 factors
correspond to certain ergodic flows.

“A triumph of 20th century mathematics” (V.F.R. Jones).

Led to further breakthroughs in related areas, e.g.:
all free ergodic probability measure preserving actions of
countable amenable groups are orbit equivalent
(Connes–Feldman–Weiss).
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CLASSIFYING C*-ALGEBRAS



C*-ALGEBRA K-THEORY

Since, in principle, a commutative C*-algebra contains all
possible information concerning its related compact
Hausdorff space, it ought to be possible to extract topological
information ring-theoretically. Nothing has yet come of this.
Possibly the trouble is that the requisite constructions and
calculations are beyond the resources of present-day ring
theory.

Irving Kaplansky, 1958

14



Definition
Suppose 1A ∈ A. K0(A) is the abelian group generated by
classes [p]0, where p is any projection in a matrix algebra
over A, subject to the relations

• [p]0 = [q]0 if p = uv and q = vu for some matrices u, v
over A

• [p]0 + [q]0 =
[(

p 0
0 q

)]
0

.

Extension of Atiyah and Hirzebruch’s topological K-theory,
which concerned itself with the study of vector bundles using
algebraic means.

E.g.: When A = C(X), have K0(A)⊗Q ∼=
⊕
H2n(X;Q).

15



EARLY RESULTS: AF ALGEBRAS

Analog of AFD vN algebras: approximately finite dimensional
(AF) C∗-algebras, admit an ascending sequence of finite
dimensional algebras that are ‖ · ‖-dense.

Theorem (Elliott, 1977)
AF C∗-algebras are classified by their K0-groups.
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TOWARDS A CLASSIFICATION

The AF condition is much more restrictive on C∗-algebras than
on vN algebras. Useful comparison:

• L∞(X,μ): AFD vN algebra
• C(X): AF C∗-algebra⇒ X is zero dimensional

Nonetheless:
Elliott’s classification program (ICM, 1994)
Classify and understand the structure of simple amenable
C∗-algebras, in the spirit of Connes, Haagerup.
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TOWARDS A CLASSIFICATION (1990S)

• 1990s, 2000s: Progress classifying “higher dimensional”
algebras relying on concrete internal structure. Think of
internal ‖ · ‖-approximations by C∗-algebras of the form
Mn
(
C(X)

)
.

• Important early example: every irrational rotation algebra
Aθ is proved to be internally approximated by Mn

(
C(T)

)
.

• The purely infinite case, the analog of type III vN algebras,
settled by Kirchberg and Phillips in late 90s.
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TOWARDS A CLASSIFICATION (2000S, 2010S)

• 2000s: counterexamples of Toms, Rørdam show that a
classification of all simple amenable C∗-algebras is too
much to hope for.

• Last 10-15 years: development of Toms–Winter regularity
theory, helping decide which simple amenable C∗-algebras
are well-behaved, or regular, enough to stand a chance at
being classified. One approach: noncommutative version
of covering dimension for C∗-algebras.

• Recall: in the vN algebra setting, amenability is enough for
classification. Not so in the C∗-setting. We need to require
regularity in addition to amenability to avoid the
counterexamples above.
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THE CLASSIFICATION THEOREM

Along with J. Gabe (Southern Denmark), A. Tikuisis (Ottawa),
C. Schafhauser (Nebraska–Lincoln), and S. White (Oxford) we
completed a proof of the following:

Theorem
Simple, amenable, and regular C∗-algebras that satisfy the
Universal Coefficient Theorem are classified up to
isomorphism by their K-theory and traces.

This settles the central classification conjecture in the
C∗-setting.

Our approach not only draws inspiration from, but has a direct
connection with the classical vN classification techniques.
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EXAMPLE: CROSSED PRODUCTS

Irrational rotation algebras
Aθ = C(T)⋊θ Z satisfies the hypotheses. In this case, the K0
and K1 groups are both Z2. The trace portion of the invariant
singles out θ, so that Aθ ∼= Aθ′ ⇔ θ = ±θ′ mod Z.

Theorem applies to lots of nice actions
Space: X =

∏∞
i=1{0, 1}; action: +1 with carry over:

(1 1 0 0 · · · ) +17−→ (0 0 1 0 · · · ) +17−→ (1 0 1 0 · · · ).

This is just the canonical action Z ↷ Z2 = lim←−Z/2iZ.
Here K0 = Z[ 12 ] and K1 = Z.

21



EXAMPLE: CROSSED PRODUCTS

Irrational rotation algebras
Aθ = C(T)⋊θ Z satisfies the hypotheses. In this case, the K0
and K1 groups are both Z2. The trace portion of the invariant
singles out θ, so that Aθ ∼= Aθ′ ⇔ θ = ±θ′ mod Z.

Theorem applies to lots of nice actions
Space: X =

∏∞
i=1{0, 1}; action: +1 with carry over:

(1 1 0 0 · · · ) +17−→ (0 0 1 0 · · · ) +17−→ (1 0 1 0 · · · ).

This is just the canonical action Z ↷ Z2 = lim←−Z/2iZ.
Here K0 = Z[ 12 ] and K1 = Z.

21



MORE GENERAL CROSSED PRODUCTS (KERR–NARYSHKIN)

The classification applies to applies to C(X)⋊ Γ if

• X is a compact metric space of finite covering dimension
• Γ↷ X is free
• Γ is elementary amenable
(Γ is built up starting with finite or abelian groups; e.g.,
nilpotent groups, solvable groups, linear groups, . . . )
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THANK YOU!
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